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Abstract

The e}ect of shear deformation and rotary inertia terms on the free vibration of a beam with overhang
was investigated[ A recently proposed modi_ed Timoshenko!type equations of motion were used to analyze
the vibration of the structure[ Two di}erent sets of boundary conditions\ with either a _xed or hinged end
support\ were studied[ The results were compared with those obtained for the classical BernoulliÐEuler beam
theory[ The comparison shows that for a hinged end beam with very long overhang\ where the span between
the supports is less than one tenth of the overall beam length\ the classical theory signi_cantly overestimates
the values of the fundamental natural frequencies\ even for isotropic shear rigidity[ On the other hand\ the
span e}ect is reversed for the clamped end beam\ for which a relatively signi_cant di}erence between the
classical theory and shear theory results may occur only for a long span[ For transversely isotropic beams\
the re_ned theory predictions of the fundamental natural frequencies may be much smaller than those
obtained through the rigid shear theory\ especially for short span hinged end beams and long span clamped
end beams[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Bresse "0748# was apparently the _rst to publish a paper taking into account the rotary inertia
in beam vibration\ followed by Rayleigh "0767#[ Later\ Timoshenko "0810# incorporated shear
deformation e}ects[ Since then many papers have been published on this subject[ Grigoliuk and
Selezov "0862# presented a most comprehensive worldwide review of bibliography\ listing about
299 references dealing with re_ned theories of beams\ plates and shells up to the year 0860[ Recent
developments were summarized in the monograph by Laura et al[ "0881#[ In most cases\ for
isotropic structures at their lower end of natural frequencies\ the e}ects of shear deformation and
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Fig[ 0[ Beam geometry and two sets of boundary conditions[

rotary inertia for solid cross!sections are insigni_cant[ The e}ects turn out to be important for
high frequency random excitation "Elishako} and Lubliner\ 0874^ Elishako} and Livshits\ 0878#\
for short beams and for transversely isotropic materials "Brunelle\ 0869#[ Recently\ Panovko
"0874# and Ari!Gur and Elishako} "0889# have shown that the e}ects become of paramount
importance for structures with overhang[ In particular\ the latter study\ which considered the
buckling of a column with overhang\ showed that the signi_cance of the shear e}ects depends on
the span between the end support and the intermediate roller support of the beam[ The present
paper is an extension of that study to the case of free vibration[

1[ Analysis

Consider a uniform beam of length L\ which is either hinged or clamped at the end x � 9 and
has a roller support at an intermediate location x � a where L − a × 9\ as presented in Fig[ 0[
The governing equations of dynamic equilibrium\ following recent modi_cations proposed by
Elishako} "0883#\ are]

EIc\xx¦kAG"w\x−c# � rIw� \x "0#

kAG"w\x−c#\x � rAw� "1#

where EI and kGA are the bending and shear sti}nesses of the beam\ respectively\ incorporating
the shear correction factor k of the cross!section\ w is the lateral de~ection\ c is the rotation of the
normal line\ r is the mass density\ w\x 0 1w: 1x and w� 0 11w: 1t1[

Assuming solutions in the form]

c � C"x# eivt^ w � W"x# eivt "2#

the following coupled di}erential equations are obtained for the de~ection shape W"x# and the
rotation angle C"x#]

EIC\xx¦"kAG¦rIv1#W\x−kAGC � 9 "3#
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kAGW\xx−kAGC\x¦rAv1W � 9 "4#

In a non!dimensional form\ de_ning the relative shear rigidity
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slenderness ratio of the beam

l 0
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"6#

nondimensional fundamental frequency
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"7#

and relative de~ection

d"j# 0
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where the radius of gyration r\ wave propagation speed c and nondimensional axial coordinate j

are\ respectively
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the di}erential eqns "3#Ð"4# transform to]

d1C
dj1

¦0ol¦
V1

l 1
dd

dj
−ol1C � 9 "00#

d1d

dj1
−l
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¦
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1[0[ Boundary conditions

As shown in Fig[ 0\ two di}erent sets of boundary conditions are considered[ The beam is either
hinged or clamped at the end j � 9\ the intermediate roller!type support is at j � a � a:L and the
free end is at j � 0[ The length of the overhang is then L−a �"0−a#L[

The boundary conditions at the supported end j � 9 are]

d � 9
dC
dj

� 9\ hinged

d � 9 C � 9\ clamped "02#

for zero de~ection and either zero bending moment "hinged end# or zero rotation "clamped end#^
at the free end j � 0 they are]
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0
l

dd

dj
−C � 9^

dC
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� 9 "03#

for zero shear force and bending moment^ and at the intermediate support j � a the de~ection is
restrained "d � 9#[

The continuity conditions at j � a read]

d"j � a−# � d"j � a¦# � 9

C"j � a−# � C"j � a¦#

dC
dj

"j � a−# �
dC
dj

"j � a¦# "04#

for continuity of de~ection\ rotation angle and internal bending moment[

1[1[ Solution

The solutions for the coupled di}erential equations "00#Ð"01# are]

d � D0 sin"qj#¦D1 cos"qj#¦D2sinh"pj#¦D3 cosh"pj# "05#

C � P0 sin"qj#¦P1 cos"qj#¦P2sinh"pj#¦P3cosh"pj# "06#

where the coe.cients are related through]

P1
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� −
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D1

�
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ql

P3

D2

�
P2
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�
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and]

q1 �X $
V1

1 00¦
0
o1%

1

¦V1l1¦
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1 00¦
0
o1 "08#

p1 �X $
V1

1 00¦
0
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1

¦V1l1−
V1

1 00¦
0
o1 "19#

The same general solutions ðeqns "05#Ð"06#Ł apply for the entire length of the beam but with
two di}erent sets of coe.cients Di "and Pi# "i � 0\ [ [ [ \ 3# for the ranges 9 ¾ j ¾ a and a ¾ j ¾ 0[
With the relationships of eqn "07# there are in total eight independent coe.cients[ The boundary
and continuity conditions\ as described in eqns "02#Ð"04#\ provide eight homogeneous equations
for these coe.cients[
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2[ Results and discussion

The system of homogeneous equations which is obtained by applying the boundary conditions
is of the form ðCŁ"P# � "9#\ where "P# is a vector of eight coe.cients Pi\ four for the solution
along the span and four for the overhang range[ For non!trivial solution det ðCŁ � 9\ which is the
characteristic equation for the natural frequencies[

For the hinged end beam the coe.cients P0 and P2 "or D1 and D3# for the span range vanish
and ðCŁ is a 5×5 matrix\ where ðCŁ for the clamped end beam remains an 7×7 matrix[ The matrix
ðCŁ for the hinged end beam is]

K
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H

H

H

H

H

H

k

QSA PSA 9 9 9 9

9 9 −QCA QSA PCA PSA

9 9 AQS AQC APS APC

9 9 QC −QS PC PS

CQA CPA −SQA −CQA −SPA −CPA
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The matrix ðCŁ for the clamped end beam is]
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−K0 9 K1 9 9 9 9 9

9 0 9 0 9 9 9 9
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where
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ql

q1−V1:o
^ K1 �

pl

p1¦V1:o
"12#

QSA � K0 sin"qa#^ PSA � K1 sinh"pa#

QCA � K0 cos"qa#^ PCA � K1 cosh"pa# "13#
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Fig[ 1[ Comparison between the present results "ž# and the classical BernoulliÐEuler "*#[
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The characteristic equations and their roots were computed using symbolic computation sof!
tware "MAPLE#[

A comparison between the classical BernoulliÐEuler beam theory and the present re_ned theory
results for an isotropic beam "n � 0:2\ G � 2E:7# is presented in Fig[ 1[ It shows that the classical
theory is inadequate for the hinged end beam with very short span between the supports[

For transversely isotropic beams\ where the transverse shear rigidity is lower "as in honeycomb
or foam core layered beams#\ the classical theory may be totally inadequate[ Moreover\ the type
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Fig[ 2[ Fundamental frequency of transversely isotropic hinged end beam vs span ratio for various shear rigidities[

Fig[ 3[ Ratio of present theory to classical fundamental frequencies vs span ratio for various shear rigidities of hinged
end beam[

of end conditions greatly a}ects the range of validity of classical beam results[ Figure 2 presents
natural frequencies for hinged end beams[ Even for shear rigidities 14 times smaller than the
isotropic "o − 0:79# the di}erences in the fundamental frequencies are relatively small for spans of
09) or more "a:L − 9[0#\ but the di}erences become extremely large for shorter spans[ To further
demonstrate the inadequacy of the classical theory to predict the frequency of the short span
hinged end beam\ the ratio V:Vcl of the present theory fundamental frequency to the classical result
is presented in Fig[ 3[ It shows a very low ratio for small a:L ratio[ Note that large shear deformation
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Fig[ 4[ Ratio of present theory to classical fundamental frequencies vs span ratio for various shear rigidities of clamped
end beam[

e}ect for very short spans was also reported "Ari!Gur and Elishako}\ 0889# for column buckling
of beams with similar boundary conditions[

Contrary to hinged end beams\ the vibration of clamped end beams with very short spans
"¾09)# may be very well predicted by the classical beam theory[ However\ in this case the error
due to neglecting shear deformation e}ects increases for large spans "see Fig[ 4#[

The di}erences in shear deformation between hinged end beams and clamped end beams are
due to the di}erences in the relative shear reactions at the intermediate support[ For hinged end
beams\ the intermediate support provides equilibrium and without it the beam is not balanced "a
mechanism#[ To obtain a balancing moment\ shorter spans require larger reaction forces and\ as
a result\ larger shear forces and deformations are produced[ On the other hand\ clamped end
beams are balanced even without the intermediate support[ If this support is close to the clamped
end it has a negligible e}ect\ because it _xes an already _xed end[ However\ when moved toward
the free end\ it provides larger support and increases the sti}ness of the beam[ The increased
support is in the form of a larger shear force and it produces larger shear deformations[

Another interesting phenomenon is the e}ect of shear rigidity on the optimum span\ which is
the span that results in the highest fundamental frequency[ For hinged end beams the optimum is
at a:L � 9[64 and it shifts to a higher span ratio when the shear rigidity is low "see Fig[ 2#[ For
clamped end beams the optimum span is a:L � 9[7 and it shifts to a shorter span for a low shear
rigidity beam "see Fig[ 5#[

3[ Conclusions

A solution for the free vibration problem of a beam with overhang was presented[ A re_ned
theory\ including shear deformation and rotary inertia terms\ was utilized[ Numerical results for
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Fig[ 5[ Fundamental frequency of transversely isotropic clamped end beam vs span ratio for various shear rigidities[

two di}erent sets of boundary conditions were presented and discussed[ A comparison between
the re_ned theory results and classical BernoulliÐEuler theory results demonstrated that for very
short span between the supports the classical theory greatly overestimates the frequency of hinged
end beams\ but it is adequate for the prediction of the frequency of clamped end beams[ This
conclusion is essentially reversed for long span beams\ where the error associated with the appli!
cation of the classical theory is larger for clamped end beams[ However\ in this range of relatively
short overhang\ the re_ned theory is needed only for transversely isotopic beams with relatively
low shear rigidity[
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